MicroFLOAT is The Best Solution For Thread Tapping

cnc milling operation close up on techniks microfloat synch tapping tool

Recent Posts

MicroFLOAT Tapping system is the BEST CHOICE for getting the most life out of your taps

Transform tapping from frustrating to fantastic with MicoFLOAT!

Why is tapping so difficult?

Tapping is one of the most complex operations a CNC machining center performs. The tapping requires perfect synchronization between the machine’s feed-rate and the spindle rotation. The feed-rate must perfectly match the spindle rotation, so the feed-rate equals the thread pitch for each rotation of the spindle.

Machinists also find that tapping on a cnc prevents his ability to be actively engaged in the process and removes the ability to use his senses for guidance while the tap is in the hole. With a machining center, a machinist can’t stop in the middle of a tapping operation when something sounds or feels wrong. You know that something is incorrect only after a tap is broken or threads are bad.

It's all about the physics

To appreciate this concept, it’s important to understand that absent a specified spindle rotation and feed-rate, a tap will try to follow its thread pitch in terms of feed-rate. Why? It all has to do with Newton’s second law of thermodynamics, of course! For those of us that may have slept through high school physics, we might need a refresher course.

Basically, in the absence of external forces, any system will try to achieve a state of its lowest possible energy. Tapping threads takes energy. Following threads requires much less energy. Hence screwing a bolt into a threaded hole requires much less energy than tapping the threads. As the lead crests on a tap cuts the threads, the following crests will try to follow the existing threads, just like a bolt.

What can go wrong?

However, in the real world we need to consider the machine’s feed-rate and spindle rotation. If these two parameters are not perfectly synchronized, the result is unwanted forces on the tap that can produce less than optimal thread quality, cause premature thread wear, and/or result in broken taps. For example, if the feed-rate is less than the thread pitch for one rotation of the spindle, the tap will “drag”, or be pulled back, into threads it has already cut. This “drag” force engages the tap in cutting that would otherwise be used to simply cleanup the existing threads produced from the leading crests.

The same is true if the feed-rate is greater than the thread pitch for one rotation of the spindle. Here, the tap is pushed into the already cut threads. In both instances, thread quality is compromised, and the tap is subjected to forces that prematurely wear the tap and can result in breakage.

Further complicating matters is exiting the tap from the threaded hole. If the tap does not perfectly follow the existing thread out of the hole, the tap will engage in unwanted cutting, or re-threading, that degrades thread quality and causes unnecessary wear on the tap. 

But my machine has rigid tapping, so I’m OK, right?

Not so fast. Rigid tapping on CNC machines promised to perfectly match the feed-rate with the spindle rotation to eliminate these issues. However, the reality is that, while helping to provide some synchronization between the feed-rate and the spindle rotation, rigid tapping is not able to achieve perfect synchronization. This is very apparent as the tap reaches the bottom of its cycle and is reversed to exit the hole. Here, again, physics is to blame!

But my machine has rigid tapping, so I’m OK, right?

One of the main advantages of rigid tapping is depth control accuracy on blind holes. To do the job accurately and consistently, a holder is needed that has enough compensation to get good tap life without causing variations in depth control. Rigid tapping on CNC machines promised to perfectly match the feed-rate with the spindle rotation to eliminate these issues. However, the reality is that, while helping to provide some synchronization between the feed-rate and the spindle rotation, rigid tapping is not able to achieve perfect synchronization. This is very apparent as the tap reaches the bottom of its cycle and is reversed to exit the hole. Here, again, physics is to blame!

Physics strikes again!

In a perfect world, at the bottom of a tap cycle, the spindle rotation and feed-rate would instantaneously stop in perfect unison and then instantaneously reverse at the proper rotational speed and feed-rate. If this were the case, we would almost never break any taps. Enter physics.

Because the spindle has mass it is subject to Newton’s first law of thermodynamics. Most notably, inertia. Simply put, since the spindle is rather large and heavy it is not possible to instantaneously stop the spindle rotation and feed-rate in perfect unison. The spindle rotation and feed-rate must have time to decelerate before stopping. The same is true when starting to reverse the tapping cycle. The spindle rotation and feed-rate must have time to accelerate up to the desired parameters. Further complicating matters is that these two parameters are individually affected by inertia, meaning that perfect synchronization is not possible.

The result?

This imperfect synchronization between spindle rotation and feed-rate at the bottom the tapping cycle creates tremendous forces on the tap. This is why most taps break at the bottom of a tapping cycle. The loss of synchronization when reversing also affects the entire exit cycle since the entry and exit parameters are not perfectly matched. This creates higher forces on the tap during exit. 

If a tap holder with tension-compression float is used, tap life and thread quality can be dramatically improved, because these extra axial forces on the tap are eliminated. The problem with traditional tension-compression holders is that they can cause large variations in tapping depth. As a tap becomes dull, the pressure needed to start the tap into the hole increases, and more compression stroke within the tap driver is used before the tap starts to cut. The result is a shallower tapping depth

MicroFLOAT to the rescue!

To counter the inevitable inability to perfectly synchronize the feed-rate and spindle rotation, especially at the bottom of a tapping cycle, Techniks offers the MicroFLOAT tapping system. The MicroFLOAT system provides compensation so these synchronization errors are smoothed out and do not put unnecessary forces on the tap to improve thread quality, extend tap life, and cause less tap breakage.

How does MicroFLOAT work?

When starting a tap, it is helpful to have a relatively rigid assembly. This helps get the tap started in the hole and begin cutting threads. If the tapping system allows too much “push float”, or compression, when entering the hole, the tap will spin-out creating a mess of the threads at the top of the hole. Some compression is helpful since when the tap enters the hole forces try to push the tap out of the hole and slow the spindle rotation (physics, again!). A little compression allows these forces to do their work, while providing time for the feed-rate and spindle rotation to catch back up and get in lock step with each other. The MicroFLOAT system offers 0.008” of compression to help get taps started, but not enough to allow the tap to spin before it starts cutting threads.

Even though the discrepancy between the machine synchronization and the tap pitch is very small, the forces exerted on the tap with a solid holder are high. Measuring the thrust forces shows that a solid holder can exert 84 times greater axial forces on the tap than when using a microfloat tap holder doing exactly the same rigid tapping operation.

At the bottom of a tapping cycle, the MicroFLOAT system provides 0.040” of tension or “pull float”. As described earlier, the spindle rotation and feed-rate cannot stop and reverse to the necessary rates instantaneously. The MicroFLOAT system provides enough tension to allow time for the spindle rotation and feed-rate to decelerate, reverse, and accelerate to the required parameters on the way out. This mitigates the forces on the tap at the bottom and though the exit of the tapping cycle and results in improved thread quality, extended thread life, and fewer broken taps.

Learn More about MicroFLOAT >

 

Greg Webb

Greg Webb

Greg has been with Techniks Tool Group for over 23 years serving in many roles from VP of Sales to President & CEO during which he has gained a deep understanding of CNC manufacturing processes and how to optimize tooling and workholding solutions for specific applications. He has written several articles, white papers, and blogs on various tooling, deburring, and workholding-related topics. As a recognized subject matter expert on CNC tooling, Greg is often approached to provide opinions and content for technical articles.

Contact Us Today!

CNC Tool Holders for Extended Reach and Deep Pocket Milling

Recent Posts

Tooling Solutions for Narrow and Deep Cavity Milling

Check out our narrow-nosed and slimfit collet systems.

Comparison of Naroow Nosed Tools

Milling in tight corners or deep cavities present machinists with a lot of different tooling requirements and machining parameters to consider.  According to this article from cnccookbook.com, the first step is simply addressing the common challenges of deep pocket milling; including tool deflection, which can lead to excessive machine chatter, wall taper, poor wall finish, and generally poor tool life and part quality. 

Deep Pocket machining will almost always require multiple stepdown passes to reach the bottom of the cavity.  The worse the tool deflection issues, the more passes will be required. It’s advised to focus on limiting the stickout, or projection, of the cutting tool from the holder as much as possible. We are speaking in the context of extended lengths, so this is relative to your part’s operation and desired wall depth. 

“In cases where you have flutes the full length of the tool, they’re going to be rubbing and potentially cutting the walls created by previous passes.  That needs to be minimized, and the right way to do that is to use tool shanks that have been relieved so they don’t contact the wall.”

While multiple stepdown passes are inevitable, machining parts with high walls require extended reach holders and end mills in order to mill at your required depths. Once your tooling is configured to reach your desired depth, we want to limit witness marks as much as possible, with each pass, in order to achieve the highest quality part. Techniks Extended length tools and SlimFIT holders provide the reach you need to get into the tightest spaces, combined with high quality, precision cutting tools, you can finally improve your deep pocket machining.

1) DNA ER Collet System

DNA collets provide shorter projection from the collet chuck for better rigidity and when clearance is needed. The DNA collet and nut system provides better rigidity and are more accurate than ER for small
diameter shanks.

2) SlimFIT Drawbar Collet System

SlimFIT collets are longer overall than ER collets and feature a 4˚ taper, delivering better engagement between collet and tool shank, resulting in better accuracy and balance than ER systems.

3) ShrinkFIT Holders

If you do high speed, or high torque machining you should seriously consider the benefits of shrink fit technology. Shrink fit uses the expansion and contraction properties of metal to provide extremely powerful tool holding. 

4) Parlec M-style Micron Chucks

The M-style mold chuck’s narrow-nose design allows for
deep, hard-to-reach machining; perfect for cutting deep
die molds and any application where reach and clearance demand enhanced precision and performance.

Greg Webb

Greg Webb

Greg has been with Techniks Tool Group for over 23 years serving in many roles from VP of Sales to President & CEO during which he has gained a deep understanding of CNC manufacturing processes and how to optimize tooling and workholding solutions for specific applications. He has written several articles, white papers, and blogs on various tooling, deburring, and workholding-related topics. As a recognized subject matter expert on CNC tooling, Greg is often approached to provide opinions and content for technical articles.

Contact Us Today!

Rescheduled: FlexLIVE Youtube Demo – May 6, 2021 – 3 pm

FlexLive - Live Demo Event Proomotion Banner

Recent Posts

Rescheduled: FlexLive on Youtube - 3pm - May 6, 2021

We have rescheduled our live youtube event with FlexLIVE for 3pm on Thursday, May 6, 2021.

How to watch instructions:

Step 1) Click link here to stream: Techniks FlexLive YouTube

Step 2) To join the chat simply login to your google/gmail account. 

FlexLive - Live Demo Event Proomotion Banner
We are excited to join the team at Flex Machine Tools for an episode of their  FlexLive YouTube series of high-quality live CNC machine demonstrations. Their talented hosts will guide you through some of the latest additions to our Techniks and Parlec brands. Our friends at Robbjack Carbide Cutting Tools have been kind enough to let us combine their high-precision cutting tools with our holders to show how TTG can help you improve your CNC production. On-hand during the event will be our very own VP of Sales, Mike Eneix, and Midwest Sales Manager, Brian Haskett, to provide technical background of these new technologies. Also joining the discussion will be VP of Engineering for Robbjack, Mike MacArthur, to add his 20 years of experience to the show and explain how combining high-precision cutting tools with Techniks Certified Holders can improve your overall production. The show will cover a detailed overview of our latest ShrinkFIT solutions, demonstrating our compact, but powerful, 00450 ShrinkFIT Machine; as well as run through of our line of ShrinkFIT holders, including coolant-ported, SlimPRO, SFS modular system, and heavy wall shrinkfit holders. Also, for the first time, the superior cutting performance of our Triton Hydraulic Holders will be live and in action. With its enhanced hydraulic bladder, Triton hydraulic holders are disproving the theory that hydros are reserved for just light milling operations. You will see how our Triton chucks are built to hog! Our final demonstration will feature our Parlec brand Micron Milling Chucks. We will describe how the unique features of Micron chucks help improve tool life, surface finish, dimensional accuracy and productivity for all types of heavy duty applications. The M-style Micron Mold Chucks are perfect for extended lengths and tight spaces. We can’t wait to deliver an engaging and informative event, and we are excited to have the chance to interact with other machinists and watch chips fly! If you make the live event, simply login to your google/gmail account and will will be able to join the discussion, and ask any of our experts any questions you may have. But, if you don’t happen to make the live event, you will be able to stream the show in its entirety from YouTube anytime.

Contact Us Today!